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- Introduction - = Mountain top observations = = Airerait observations -
Remote tropical island mountaintops offer access to the remote tropical free troposphere. The ‘
tropical free troposphere is important for regional and global transport, zonally and between the Methods Br  structure in the UTLS over the tWPO
surface and stratosphere. Halogen chemistry plays an important role in this remote environment. Optimal Estimation s mliin Rl ol ARAPARS 384 g
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Fig. 5: MAX-DOAS observations are inherently
calibrated by measurements of oxygen collision

complexes (0,-0,), Raman scattering, and ' ' ‘ | ' ol L g
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First, aerosol extinction is retrieved from 0,0, outlined in Coburn et al., 2016. By maximizing the
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Fig. 1: Location of mountaintop sites set up in 2017. Also shown flight tracks from TORERO (Blue, 2012), weighting functions that serve as inversion input, are gained at altitudes distant from the instrument
i i AR TGPt Y together with vertically resolved trace gas SCDs . in the free troposphere. Fig. 10: Structure of gas-phase inorganic bromine, Br,, in the UTLS constrained by CU AMAX-DOAS BrO
Halogens destroy about 20% of tropospheric ozone, modify oxidizing capacity, atmospheric and other observations during the CONTRAST campaign (Koenig et al., 2017). Carbon loss from VSLS is a

source for increasing Br, in the lower stratosphere. While other Br, sources, presumably from sea-salt,
are needed to explain elevated Br, in the upper troposphere (Wang et al., 2015; Volkamer et al., 2015).

mercury, and aerosols. Long term measurements over remote oceans are generally scarce, and

v ., | . . Seasonal Changes at Maido Observatory
have traditionally been limited to very short lived organic species (VSLS). Long term » X

measurements of inorganic halogen radicals provide insights into other sources (e.g., sea-salt) i T " J " Fig. /7-' {-'Iexpart Th-e mechanism /eading to th? Br, mi.nimum is not currently understood. DeFreasing BrO in the lower TTL
and are extremely limited in pristine air, yet help understand processes affecting preindustrial gggsﬁglofurface (Dix et al., 20'1h6), ancligmcrea;mg Br, in the 45-(Wern.erzt al. 2017) ha.d prev//ously been observed, and are
ozone, relative'to' which-anthropogenic change needs to be-evaluated: e Sl = consistent with our observations of a Br, minimum in the UTLS (Koenig et al., 2017).
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Fig. 8 (left): BrO and 10 dSCDs observed during the initial phase
of our project at Maido Observatory. Measurements from two
EA are shown to illustrate the potential to evaluate vertical

ﬁ,,onfh of7Yea? $ 10 11 12 profiles. BrO is mostly above, and 10 near and below.
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Fig. 2: Comparison of GEOS-Chem Fig. 3: Tropospheric annual average inorganic halogen
BrO VCDs to OMI measurements concentrations from GEOS-Chem (Sherwen et al., 2016). Green

(Schmidt et al., 2016). stars indicate the locations of MLO and Maido.
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o | 5 ReRrua oy and GOME-2 2007 satellite observations IO profiles, and comparison with observations
JMAX-DOAS (CU) - T —T— , (Schmidt et al., 2016). Green dots: TORERO, blue over the tEPO (Schmidt et al., 2016).
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B © Gaseous Elemental Halogen driven change in NO,, O, production, OH, and CH, loss GIOba”y, trOpOSpherIC ha|0gens.
Fig- 3R e 3 Mercury (GEM) at T eSS el Reduce the tropospheric O, burden by 15-
_ - Eastern Indian Ocean (see Fig. 1) o MLO (2011-2014). 20%, O, lifetime from 26 days to 22 days.
experiences ~ SH  tropical-  and S S A ' I N N .3
subtropical air. CU has a MAX-DOAS Month of Year Month of year
installed at Maido, and BIRA one at Bromine radicals oxidize GEM to form RGM. RGM is highly water soluble, and readily undergoes dry and %
sea-level. wet deposition. The cause for the RGM maximum during JJA, and the minimum during DJF is unknown. E
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e Global mean OH is 4.5 % lower than in a
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